Background: Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells.
Methods: Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation.
The loss of salivary gland function caused by radiation therapy of the head and neck is a serious condition and it affects a patient's quality of life. The current lack of effective therapies demands new options to be explored. This study tested whether human salivary gland epithelial cells (SGECs) could be successfully cultured on a decellularized porcine gut matrix (SIS-muc) in both mono- and coculture with microvascular endothelial cells (mvECs).
View Article and Find Full Text PDFObjectives: Residual unbound resin monomers of 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) are known to diffuse in the saliva and through dentin and pulp into the blood and may affect cellular integrity. The current study was performed to investigate the genotoxic potential of both monomers in distinctly lower concentrations than known to cause cytotoxic damage.
Methods: Lymphocytes from 10 healthy volunteers were treated with HEMA (10μM-1mM) and TEGDMA (1μM-100μM) for 24h.
Human nasal miniorgan cultures (MOC) are a useful tool in ecogenotoxicology. Repetitive exposure to nicotine showed reversible DNA damage, and stable CYP2A6 expression was demonstrated in nasal MOC in previous investigations. The aim of the present study was to evaluate the genotoxic effect of nicotine in nasal MOC after chronic nicotine exposure, and to monitor possible metabolism capacities.
View Article and Find Full Text PDFGenotoxic effects of nicotine were described in different human cells including salivary gland cells. Based on the high nicotine concentration in saliva of smokers or patients using therapeutic nicotine patches, the current study was performed to evaluate the genotoxic potential of nicotine in human salivary gland cells. Therefore, primary salivary gland cells from 10 patients undergoing parotid gland surgery were exposed to nicotine concentrations between 1 μM and 1000 μM for 1 h in the absence of exogenous metabolic activation.
View Article and Find Full Text PDF