Publications by authors named "G Stefanucci"

The extraordinary quantum properties of nonequilibrium systems governed by dissipative dynamics have become a focal point in contemporary scientific inquiry. The nonequilibrium Green's functions (NEGF) theory provides a versatile method for addressing driven nondissipative systems, utilizing the powerful diagrammatic technique to incorporate correlation effects. We here present a second-quantization approach to the dissipative NEGF theory, reformulating Keldysh ideas to accommodate Lindbladian dynamics and extending the Kadanoff-Baym equations accordingly.

View Article and Find Full Text PDF

Quantum simulations of photoexcited low-dimensional systems are pivotal for understanding how to functionalize and integrate novel two-dimensional (2D) materials in next-generation optoelectronic devices. First-principles predictions are extremely challenging due to the simultaneous interplay of light-matter, electron-electron, and electron-nuclear interactions. We here present an advanced ab initio many-body method that accounts for quantum coherence and non-Markovian effects while treating electrons and nuclei on equal footing, thereby preserving fundamental conservation laws like the total energy.

View Article and Find Full Text PDF

We present a time-linear scaling method to simulate open and correlated quantum systems out of equilibrium. The method inherits from many-body perturbation theory the possibility to choose selectively the most relevant scattering processes in the dynamics, thereby paving the way to the real-time characterization of correlated ultrafast phenomena in quantum transport. The open system dynamics is described in terms of an "embedding correlator" from which the time-dependent current can be calculated using the Meir-Wingreen formula.

View Article and Find Full Text PDF

We demonstrate the feasibility of the time-linear scaling formulation of the GW method [Phys. Rev. Lett.

View Article and Find Full Text PDF

The interaction of electrons with quantized phonons and photons underlies the ultrafast dynamics of systems ranging from molecules to solids, and it gives rise to a plethora of physical phenomena experimentally accessible using time-resolved techniques. Green's function methods offer an invaluable interpretation tool since scattering mechanisms of growing complexity can be selectively incorporated in the theory. Currently, however, real-time Green's function simulations are either prohibitively expensive due to the cubic scaling with the propagation time or do neglect the feedback of electrons on the bosons, thus violating energy conservation.

View Article and Find Full Text PDF