Publications by authors named "G Steenackers"

Background: Hyperspectral imaging techniques have emerged as powerful tools for non-invasive investigation of artworks. This paper employs either reflectance imaging spectroscopy (RIS) or macroscopic X-ray fluorescence (MA-XRF) imaging in combination with macroscopic X-ray powder diffraction (MA-XRPD) for state-of-the-art chemical imaging of painted cultural heritage artefacts. While RIS can provide molecular information and MA-XRF can offer elemental distribution maps of paintings of high lateral resolution, the unique advantage of MA-XRPD lies in its ability to visualize the distributions of specific pigments and estimate in a quantitative manner the relative concentrations of the crystalline phases at the surface of artworks.

View Article and Find Full Text PDF

Purpose: Inadequate perfusion is the most common cause of partial flap loss in tissue transfer for post-mastectomy breast reconstruction. The current state-of-the-art uses computed tomography angiography (CTA) to locate the best perforators. Unfortunately, these techniques are expensive and time-consuming and not performed during surgery.

View Article and Find Full Text PDF

Over the past 30 years, research on meniscal kinematics has been limited by challenges such as low-resolution imaging and capturing continuous motion from static data. This study aimed to develop a computational knee model that overcomes these limitations and enables the continuous assessment of meniscal dynamics. A high-resolution MRI dataset (n = 11) was acquired in 4 configurations of knee flexion.

View Article and Find Full Text PDF

Background: Thermography can be used in pre-operative planning of free perforator flap surgeries. Thermography assesses skin temperature by measuring the quantity of infrared radiation observed. In this meta-analysis, authors assess the sensitivity of smartphone-based thermal imaging (SBTI) in the detection of perforators and analyze the difference between static and dynamic imaging.

View Article and Find Full Text PDF

Museum staff usually relies on a proven combination of X-ray radiography (XRR) and infrared reflectography (IRR) to study paintings in a non-destructive manner. In the last decades, however, the research toolbox of heritage scientists has expanded considerably, with a prime example being macro X-ray fluorescence (MA-XRF), producing element-specific images. The goal of this article is to illustrate the added value of augmenting MA-XRF with pulse phase thermography (PPT), a variant of active infrared thermographic imaging (IRT), which is an innovative diagnostic method that is able to reveal variations between or in materials, based on a different response to minor fluctuations in temperature when irradiated with optical radiation.

View Article and Find Full Text PDF