Publications by authors named "G Staszczak"

This work reports on the possibility of sustaining a stable operation of polarization-doped InGaN light emitters over a particularly broad temperature range. We obtained efficient emission from InGaN light-emitting diodes between 20 K and 295 K and from laser diodes between 77 K and 295 K under continuous wave operation. The main part of the p-type layers was fabricated from composition-graded AlGaN.

View Article and Find Full Text PDF

Using the example of III-V nitrides crystallizing in a wurtzite structure (GaN, AlN, and InN), this review presents the special role of hydrostatic pressure in studying semiconductor properties. Starting with a brief description of high-pressure techniques for growing bulk crystals of nitride compounds, we focus on the use of hydrostatic pressure techniques in both experimental and theoretical investigations of the special properties of nitride compounds, their alloys, and quantum structures. The bandgap pressure coefficient is one of the most important parameters in semiconductor physics.

View Article and Find Full Text PDF

In order to shift the light emission of nitride quantum structures towards the red color, the technological problem of low In incorporation in InGaN-based heterostructures has to be solved. To overcome this problem, we consider superlattices grown on InGaN buffers with different In content. Based on the comparison of the calculated ab initio superlattice band gaps with the photoluminescence emission energies obtained from the measurements on the specially designed samples grown by metal-organic vapor phase epitaxy, it is shown that by changing the superlattice parameters and the composition of the buffer structures, the light emission can be shifted to lower energies by about 167 nm (0.

View Article and Find Full Text PDF

We report on III-nitride-based micro-light-emitting diodes (µLEDs) operating at 450 nm wavelength with diameters down to 2 µm. Devices with a standard LED structure followed by a tunnel junction were grown by plasma-assisted molecular beam epitaxy. The emission size of µLEDs was defined by shallow He implantation of the tunnel junction region.

View Article and Find Full Text PDF

Nitride-based light-emitting diodes (LEDs) are well known to suffer from a high built-in electric field in the quantum wells (QWs). In this paper we determined to what extent the electric field is screened by injected current. In our approach we used high pressure to study this evolution.

View Article and Find Full Text PDF