Material extrusion (MEX) additive manufacturing has successfully fabricated assembly-free structures composed of different materials processed in the same manufacturing cycle. Materials with different mechanical properties can be employed for the fabrication of bio-inspired structures (i.e.
View Article and Find Full Text PDFIn this article, the multimaterial extrusion (M-MEX) technology is used to fabricate, in a single step, a three-dimensional printed soft electromagnetic (EM) actuator, based on internal channels, filled with soft liquid metal (Galinstan) and equipped with an embedded strain gauge, for the first time. At the state of the art, M-MEX techniques result underexploited for the manufacture of soft EM actuators: only traditional manufacturing approaches are used, resulting in many assembly steps. The main features of this work are as follows: (1) one shot fabrication, (2) smart structure equipped with sensor unit, and (3) scalability.
View Article and Find Full Text PDFThe fabrication of bioinspired structures has recently gained an increasing popularity: mimicking the way in which nature develops structures is a vital prerequisite in soft robotics to achieve multiple benefits. Stiff structures connected by soft joints (recalling, for instance, human bones connected by cartilage) are highly appealing: several prototypes have been manufactured and tested, demonstrating their full potential. In the present research, the material extrusion (MEX) additive manufacturing technology has been used to manufacture stiff-soft bioinspired structures activated by shape memory alloy (SMA) actuators.
View Article and Find Full Text PDFIn this paper a new low-cost stretchable coplanar capacitive sensor for liquid level sensing is presented. It has been 3D-printed by employing commercial thermoplastic polyurethane (TPU) and conductive materials and using a fused filament fabrication (FFF) process for monolithic fabrication. The sensor presents high linearity and good repeatability when measuring sunflower oil level.
View Article and Find Full Text PDFAir tightness is a challenging task for 3D-printed components, especially for fused filament fabrication (FFF), due to inherent issues, related to the layer-by-layer fabrication method. On the other hand, the capability of 3D print airtight cavities with complex shapes is very attractive for several emerging research fields, such as soft robotics. The present paper proposes a repeatable methodology to 3D print airtight soft actuators with embedded air connectors.
View Article and Find Full Text PDF