Purpose: To evaluate the role of radiomics in preoperative outcome prediction in cirrhotic patients who underwent transjugular intrahepatic portosystemic shunt (TIPS) using "controlled expansion covered stents".
Materials And Methods: This retrospective institutional review board-approved study included cirrhotic patients undergoing TIPS with controlled expansion covered stent placement. From preoperative CT images, the whole liver was segmented into Volumes of Interest (VOIs) at the unenhanced and portal venous phase.
The trend toward personalized medicine necessitates drawing conclusions from descriptive indexes of physiopathological states estimated from individual recordings of biomedical signals, using statistical analyses that focus on subject-specific differences between experimental conditions. In this context, the present work introduces an approach to assess functional connectivity in brain and physiologic networks by pairwise information-theoretic measures of coupling between signals, whose significance and variations between conditions are statistically validated on a single-subject basis through the use of surrogate and bootstrap data analyses. The approach is illustrated on single-subject recordings of (i) resting-state functional magnetic resonance imaging (rest-fMRI) signals acquired in a pediatric patient with hepatic encephalography associated to a portosystemic shunt and undergoing liver vascular shunt correction, and of (ii) cardiovascular and cerebrovascular time series acquired at rest and during head-up tilt in a subject suffering from orthostatic intolerance.
View Article and Find Full Text PDFKeeping up with the shift towards personalized neuroscience essentially requires the derivation of meaningful insights from individual brain signal recordings by analyzing the descriptive indexes of physio-pathological states through statistical methods that prioritize subject-specific differences under varying experimental conditions. Within this framework, the current study presents a methodology for assessing the value of the single-subject fingerprints of brain functional connectivity, assessed both by standard pairwise and novel high-order measures. Functional connectivity networks, which investigate the inter-relationships between pairs of brain regions, have long been a valuable tool for modeling the brain as a complex system.
View Article and Find Full Text PDFObjective: Mechanisms of neurocognitive injury as post-operative sequelae of coronary artery bypass grafting (CABG) are not understood. The systemic inflammatory response to surgical stress causes skeletal muscle impairment, and this is also worsened by immobility. Since evidence supports a link between muscle vitality and neuroprotection, there is a need to understand the mechanisms by which promotion of muscle activity counteracts the deleterious effects of surgery on long-term cognition.
View Article and Find Full Text PDF