Publications by authors named "G Souche"

Background: Primary hyperoxaluria type 1 (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine:glyoxylate aminotransferase (AGT). PH1 is a clinically and genetically heterogeneous disorder. The aim of our study was to analyze and characterize the mutational spectrum of PH1 in Tunisian patients.

View Article and Find Full Text PDF

Primary hyperoxaluria type I (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine : glyoxylate aminotransferase (AGT) which is deficient or mistargeted to mitochondria. PH1 shows considerable phenotypic and genotypic heterogeneity. The incidence and severity of PH1 varies in different geographic regions.

View Article and Find Full Text PDF

Primary hyperoxaluria is a genetic disorder in glyoxylate metabolism that leads to systemic overproduction of oxalate. Functional deficiency of alanine-glyoxylate aminotransferase in this disease leads to recurrent nephrolithiasis, nephrocalcinosis, systemic oxalosis, and kidney failure. The aim of this study was to determine the molecular etiology of kidney transplant loss in a young Tunisian individual.

View Article and Find Full Text PDF

Background: Primary hyperoxaluria type 3 (PH3) is due to mutations in the recently identified 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 might be the least severe form with a milder phenotype with good preservation of kidney function in most patients. The aim of this study was to report three PH3 cases carrying mutations in HOGA1.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is mainly caused by small molecular lesions of the CFTR gene; mutation detection methods based on conventional PCR do not allow the identification of all CF alleles in a population and large deletions may account for a number of these unidentified molecular lesions. It is only recently that the availability of quantitative PCR methodologies made the search for large gene rearrangements easier in autosomal diseases. Using a combination of different methods, nine of the 37 unidentified CF alleles (24%) were found to harbor large deletions in our cohort of 1600 CF alleles.

View Article and Find Full Text PDF