Iron insertion into porphyrins is an essential step in heme biosynthesis. In the coproporphyrin-dependent pathway, specific to monoderm bacteria, this reaction is catalyzed by the monomeric enzyme coproporphyrin ferrochelatase. In addition to the mechanistic details of the metalation of the porphyrin, the identification of the substrate access channel for ferrous iron to the active site is important to fully understand this enzymatic system.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
May 2024
Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L.
View Article and Find Full Text PDFThe identification of the coproporphyrin-dependent heme biosynthetic pathway, which is used almost exclusively by monoderm bacteria in 2015 by Dailey et al. triggered studies aimed at investigating the enzymes involved in this pathway that were originally assigned to the protoporphyrin-dependent heme biosynthetic pathway. Here, we revisit the active site of coproporphyrin ferrochelatase by a biophysical and biochemical investigation using the physiological substrate coproporphyrin III, which in contrast to the previously used substrate protoporphyrin IX has four propionate substituents and no vinyl groups.
View Article and Find Full Text PDFMost hemoproteins display an all-α-helical fold, showing the classical three on three (3/3) globin structural arrangement characterized by seven or eight α-helical segments that form a sandwich around the heme. Over the last decade, a completely distinct class of heme-proteins called nitrobindins (Nbs), which display an all-β-barrel fold, has been identified and characterized from both structural and functional perspectives. Nbs are ten-stranded anti-parallel all-β-barrel heme-proteins found across the evolutionary ladder, from bacteria to Homo sapiens.
View Article and Find Full Text PDFUnderstanding the reaction mechanism of enzymes at the molecular level is generally a difficult task, since many parameters affect the turnover. Often, due to high reactivity and formation of transient species or intermediates, detailed information on enzymatic catalysis is obtained by means of model substrates. Whenever possible, it is essential to confirm a reaction mechanism based on substrate analogues or model systems by using the physiological substrates.
View Article and Find Full Text PDF