Publications by authors named "G Sipos"

This paper presents the approach adopted by the EGI-ACE project for the setup and delivery of Data Spaces for various scientific domains. The work was implemented by members of the EGI e-infrastructure and of several European Research Infrastructures in the context of the European Open Science Cloud programme. Our results are several Data Space services that enable the reuse and exploitation of open, scientific big data for compute intensive use cases.

View Article and Find Full Text PDF

Amino acids are vital motifs in the domain of biochemistry, serving as the foundational unit for peptides and proteins, while also holding a crucial function in many biological processes. Due to their bifunctional character, they have been also used for combinatorial chemistry purposes, such as the preparation of DNA-encoded chemical libraries. We developed a practical synthesis for α-heteroaryl-α-amino acids starting from an array of small heteroaromatic halides.

View Article and Find Full Text PDF

Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable.

View Article and Find Full Text PDF

Genes involved in mycoremediation were identified by comparative genomics analysis in 10 armillarioid species and selected groups of white-rot Basidiomycota (14) and soft-rot Ascomycota (12) species to confine the distinctive bioremediation capabilities of the armillarioids. The genomes were explored using phylogenetic principal component analysis (pPCA), searching for genes already documented in a biocatalysis/biodegradation database. The results underlined a distinct, increased potential of aromatics-degrading genes/enzymes in armillarioids, with particular emphasis on a high copy number and diverse spectrum of benzoate 4-monooxygenase [EC:1.

View Article and Find Full Text PDF