Autophagy serves an innate immune function in defending the host against invading bacteria, including group A (GAS). Autophagy is regulated by numerous host proteins, including the endogenous negative regulator calpain, a cytosolic protease. Globally disseminated serotype M1T1 GAS strains associated with high invasive disease potential express numerous virulence factors and resist autophagic clearance.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFGroup A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity.
View Article and Find Full Text PDFIn contrast to mild infections of Group A Streptococcus (GAS) invasive infections of GAS still pose a serious health hazard: GAS disseminates from sterile sites into the blood stream or deep tissues and causes sepsis or necrotizing fasciitis. In this case antibiotics do not provide an effective cure as the bacteria are capable to hide from them very quickly. Therefore, new remedies are urgently needed.
View Article and Find Full Text PDFBacterial pathogens use invasion into human cells as a strategy to escape not only the host's immune response, but also anti-bacterial treatment. This often leads to persistence and enables reinitiation of the infection process at a later time point. Here, we show that a family of myxobacterial metabolites, disorazoles, block invasion of group A Streptococcus (GAS) into human epithelial cells.
View Article and Find Full Text PDF