Publications by authors named "G Scrofani"

Lightfield microscopy has raised growing interest in the last few years. Its ability to get three-dimensional information about the sample in a single shot makes it suitable for many applications in which time resolution is fundamental. In this paper we present a novel device, which is capable of converting any conventional microscope into a lightfield microscope.

View Article and Find Full Text PDF

We report a protocol that takes advantage of the Fourier lightfield microscopy concept for providing 3D darkfield images of volumetric samples in a single-shot. This microscope takes advantage of the Fourier lightfield configuration, in which a lens array is placed at the Fourier plane of the microscope objective, providing a direct multiplexing of the spatio-angular information of the sample. Using the proper illumination beam, the system collects the light scattered by the sample while the background light is blocked out.

View Article and Find Full Text PDF

Recently, Fourier light field microscopy was proposed to overcome the limitations in conventional light field microscopy by placing a micro-lens array at the aperture stop of the microscope objective instead of the image plane. In this way, a collection of orthographic views from different perspectives are directly captured. When inspecting fluorescent samples, the sensitivity and noise of the sensors are a major concern and large sensor pixels are required to cope with low-light conditions, which implies under-sampling issues.

View Article and Find Full Text PDF

Light field technologies have seen a rise in recent years and microscopy is a field where such technology has had a deep impact. The possibility to provide spatial and angular information at the same time and in a single shot brings several advantages and allows for new applications. A common goal in these applications is the calculation of a depth map to reconstruct the three-dimensional geometry of the scene.

View Article and Find Full Text PDF

Integral microscopy is a 3D imaging technique that permits the recording of spatial and angular information of microscopic samples. From this information it is possible to calculate a collection of orthographic views with full parallax and to refocus computationally, at will, through the 3D specimen. An important drawback of integral microscopy, especially when dealing with thick samples, is the limited depth of field (DOF) of the perspective views.

View Article and Find Full Text PDF