Publications by authors named "G Schmid-Schoenbein"

Different approaches have investigated the effects of different extracellular matrices (ECMs) and three-dimensional (3D) culture on islet function, showing encouraging results. Ideally, the proper scaffold should mimic the biochemical composition of the native tissue as it drives numerous signaling pathways involved in tissue homeostasis and functionality. Tissue-derived decellularized biomaterials can preserve the ECM composition of the native tissue making it an ideal scaffold for 3D tissue engineering applications.

View Article and Find Full Text PDF

Objectives: The neuropeptide Y(2) G-protein-coupled receptor (NPY2R) relays signals from PYY or neuropeptide Y toward satiety and control of body mass. Targeted ablation of the NPY2R locus in mice yields obesity, and studies of NPY2R promoter genetic variation in more than 10,000 human participants indicate its involvement in control of obesity and BMI. Here we searched for genetic variation across the human NPY2R locus and probed its functional effects, especially in the proximal promoter.

View Article and Find Full Text PDF

The genetic basis of hypertension in the genetically/hereditary hypertensive (BPH/2) mouse strain is incompletely understood, although a recent genome scan uncovered evidence for several susceptibility loci. To probe the neuroendocrine transcriptome in this disease model, 12 488 probe set microarray experiments were performed on mRNA transcripts from adrenal glands of juvenile (prehypertensive) and adult BPH/2 (hypertensive), as well as the genetically/hereditary low-blood pressure (BPL/1), strains at both time points. To determine the impact of strain (BPH/2 versus BPL/1), age (juvenile versus adult), and the interaction of strain and age on gene expression levels, we performed standard 2-factor ANOVA and computed a concordance coefficient to assess the reproducibility of gene expression measurements among replicates.

View Article and Find Full Text PDF

Intravital microscopy facilitates insights into muscle microcirculatory structural and functional control, provided that surgical exteriorization does not impact vascular function. We utilized a novel combination of phosphorescence quenching, microvascular oxygen pressure (microvascular PO(2)), and microsphere (blood flow) techniques to evaluate static and dynamic behavior within the exposed intact (I) and exteriorized (EX) rat spinotrapezius muscle. I and EX muscles were studied under control, metabolic blockade with 2,4-dinitrophenol (DNP), and electrically stimulated conditions with 1-Hz contractions, and across switches from 21 to 100% and 10% inspired O(2).

View Article and Find Full Text PDF