Publications by authors named "G Schinteie"

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

Fabrication and extensive characterization of hard-soft nanocomposites composed of hard magnetic low-temperature phase LTP-MnBi and amorphous FeSiB soft magnetic phase for bulk magnets are reported. Samples with compositions MnBi + x⋅(FeSiB) (x = 0, 3, 5, 10, 20 wt.%) were prepared by spark plasma sintering of powder mixtures.

View Article and Find Full Text PDF

AuFe nanophase thin films of different compositions and thicknesses were prepared by co-deposition magnetron sputtering. Complex morpho-structural and magnetic investigations of the films were performed by X-ray Diffraction, cross-section Transmission Electron Microscopy, Selected Area Electron Diffraction, Magneto Optical Kerr Effect, Superconducting Quantum Interference Device magnetometry and Conversion Electron Mössbauer Spectroscopy. It was proven that depending on the preparation conditions, different configurations of defect α-Fe magnetic clusters, i.

View Article and Find Full Text PDF

Structural and magnetic properties of Fe oxide nanoparticles prepared by laser pyrolysis and annealed in high pressure hydrogen atmosphere were investigated. The annealing treatments were performed at 200 °C (sample A200C) and 300 °C (sample A300C). The as prepared sample, A, consists of nanoparticles with ~ 4 nm mean particle size and contains C (~ 11 at.

View Article and Find Full Text PDF

The aim of this paper is to present a reliable procedure for the experimental determination of the specific absorption rate (SAR) in case of superparamagnetic Fe oxide nanoparticles dispersed in liquid environments. It is based on the acquisition of consecutive steps of time-temperature dependences along of both heating and cooling processes. Linear fitting of these recorded steps provides the heating and cooling speeds at different temperatures, which finally allow the determination of the heating profile in adiabatic-like conditions over a broad temperature range.

View Article and Find Full Text PDF