Publications by authors named "G Schiavoni"

Blood and airway eosinophilia represent markers for the endotype-driven treatment of allergic asthma. Little is known on mechanisms that link eosinophils and airway epithelial cells before and after these cells are infiltrated by eosinophils during allergic response. Given that innate immune mechanisms, mainly mediated by epithelial-derived cytokines (IL-33, IL-25, TSLP), induce eosinophil-maturing/attractive substances, we thought to evaluate the crosstalk between eosinophils and airway epithelial cells in the context of IL-33-mediated allergic inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Eosinophils, when activated by the alarmin IL-33, produce extracellular vesicles (EV) that show potential anti-tumor effects, contrasting with those activated by IL-5.
  • Incorporating these IL-33-activated eosinophil-derived EV (Eo33-EV) into tumor cells leads to increased expression of genes that promote cell cycle arrest and reduces tumor growth and metastasis.
  • RNA sequencing highlights that Eo33-EV are enriched with tumor suppressor genes and pathways that enhance an epithelial phenotype, indicating their potential role in cancer therapy through cell reprogramming.
View Article and Find Full Text PDF

Purpose: Co-occurring mutations in KEAP1 and STK11/KRAS have emerged as determinants of survival outcomes in patients with non-small cell lung cancer (NSCLC) treated with immunotherapy. However, these mutational contexts identify a fraction of nonresponders to immune checkpoint inhibitors. We hypothesized that KEAP1 wild-type tumors recapitulate the transcriptional footprint of KEAP1 mutations and that this KEAPness phenotype can determine immune responsiveness with higher precision compared to mutation-based models.

View Article and Find Full Text PDF

HER2 activating mutations have emerged as oncogenic drivers and therapeutic targets in a variety of human tumors. In breast cancer, these deregulations occur at low frequency, and are mostly detected in HER2-nonamplified, metastatic disease. Preclinical evidence has clarified the role of hotspot mutations in HER2 constitutive activation, defining them as an alternative mechanism to HER2 gene amplification.

View Article and Find Full Text PDF