Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated Umod and Umod knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage.
View Article and Find Full Text PDFBackground: The water channels aquaporin-1 (AQP1) and AQP7 are abundantly expressed in the peritoneal membrane. While AQP1 facilitates water transport during peritoneal dialysis (PD), the role of AQP7, which mediates glycerol transport during fasting, remains unknown.
Methods: We investigated the distribution of AQP7 and AQP1 and used a mouse model of PD to investigate the role of AQP7 in the peritoneal membrane at baseline and after fasting.
The kidney-specific gene encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in contribute to CKD.
View Article and Find Full Text PDF