Publications by authors named "G Schembecker"

Continuous manufacturing of pharmaceuticals promises many advantages regarding economics and quality. However, tracing deviating material in such processes is much more challenging than in batch processes due to axial back-mixing. The literature has proven the traceability of disturbances in the active pharmaceutical ingredient (API) by residence time distribution (RTD) models.

View Article and Find Full Text PDF

Continuous manufacturing (CM) offers advantages in quality and space-time yield compared to common batch manufacturing. However, higher yield losses due to the start-up procedure make a broad application uneconomical. This work discusses the possibility of reducing yield losses by adjusting the degree of back-mixing.

View Article and Find Full Text PDF

Loss-in-weight feeders are an integral part of most continuous manufacturing processes, ensuring a constant mass flow. The feeders cause a significant degree of back-mixing in such lines. Understanding back-mixing is essential for the treatment of disturbances.

View Article and Find Full Text PDF

Their surface activity enables proteins to form and stabilize foam, which can be used for in situ product separation or foam fractionation. Thus, it would be highly desirable to predict the surface activity of proteins based on their molecular properties like hydrophobicity, amphilicity, or structure on primary, secondary, and tertiary level. Ionic strength and pH were adjusted to gain maximum surface activity.

View Article and Find Full Text PDF