Publications by authors named "G Schansker"

Photosynthetic Control is defined as the control imposed on photosynthetic electron transport by the lumen-pH-sensitive re-oxidation of plastoquinol (PQH) by cytochrome bf. Photosynthetic Control leads at higher actinic light intensities to an electron transport chain with a (relatively) reduced photosystem (PS) II and PQ pool and a (relatively) oxidized PS I. Making Light Curves of more than 33 plant species with the recently introduced DUAL-KLAS-NIR (Chl a fluorescence + the redox states of plastocyanin (PC), P700, and ferredoxin (Fd)) the light intensity-dependent induction of Photosynthetic Control was probed and characterized.

View Article and Find Full Text PDF

The photosynthetic electron transport chain is mineral rich. Specific mineral deficiencies can modify the electron transport chain specifically. Here, it is shown that on the basis of 2 short Chl fluorescence and P700 measurements (approx.

View Article and Find Full Text PDF

Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment-protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without carotenes in their photosystems have been reported so far, which has led to the common opinion that carotenes are essential for photosynthesis.

View Article and Find Full Text PDF

In several systems, from plant's canopy to algal bioreactors, the decrease of the antenna size has been proposed as a strategy to increase the photosynthetic efficiency. However, still little is known about possible secondary effects of such modifications. This is particularly relevant because the modulation of the antenna size is one of the most important light acclimation responses in photosynthetic organisms.

View Article and Find Full Text PDF

The saturation pulse method provides a means to distinguish between photochemical and non-photochemical quenching, based on the assumption that the former is suppressed by a saturating pulse of light (SP) and that the latter is not affected by the SP. Various types of non-photochemical quenching have been distinguished by their rates of dark relaxation in the time ranges of seconds, minutes, and hours. Here we report on a special type of non-photochemical quenching, which is rapidly induced by a pulse of high-intensity light, when PS II reaction centers are closed, and rapidly relaxes again after the pulse.

View Article and Find Full Text PDF