Publications by authors named "G Satyanarayana"

This study demonstrates quick access to heteroatom-embodied complex fused polycyclic frameworks through a palladium-catalyzed domino process facilitated by microwave-assisted crossover annulation of -alkynylarylhalides and dihydrobenzofurans derivatives. The overall success of this process lies in the careful design of dihydrobenzofuran precursors that direct the initial palladium-mediated annulation step to proceed in a highly regioselective manner to furnish a single regioisomeric product. Notably, this one-pot method has witnessed good substrate scope and has furnished products with excellent yields.

View Article and Find Full Text PDF

Herein, we present a hitherto unexplored efficient strategy for rapidly constructing structurally constrained and intriguing polycyclic frameworks with two adjacent quaternary centers. Remarkably, this becomes possible through palladium-catalyzed six-fold domino crossover annulations of simple 1,2-bis(2-bromoaryl)ethynes and 1,2-diarylethynes. Notably, this approach demonstrates the synthesis of both C-symmetric and unsymmetric polycyclic products.

View Article and Find Full Text PDF

Pentoxifylline (PTX) is a widely used pharmacological agent for the selection of motile sperm in both normozoospermic and asthenozoospermic ejaculates prior to their use in assisted reproductive technologies (ARTs), e.g. intracytoplasmic sperm injection (ICSI).

View Article and Find Full Text PDF

Site-selective activation of a particular remote C-H bond in molecules with multiple C-H bonds remains challenging in organic synthesis. In addition, evolving such transformations via the utilization of unconventional techniques is highly desirable. We demonstrated hitherto unexplored double bond geometry-guided and end-on nitrile-template-assisted -C-H functionalization of indene enoate esters under microwave-accelerated conditions.

View Article and Find Full Text PDF

Fragrance, a key ingredient in cosmetics, often triggers skin allergy causes rashes, itching, dryness, and cracked or scaly skin. Cinnamaldehyde (CA), derived from the bark of the cinnamon tree, used as a fragrance and is a moderate skin sensitizer. CA exhibits strong UVB absorption, its allergic potential and the molecular mechanisms underlying skin sensitization under UVB exposure remain largely unexplored.

View Article and Find Full Text PDF