Publications by authors named "G Sas"

In the present study, the ability of a coating of zinc oxide (ZnO) powder to improve the fire-safety of wood exposed to radiative heat flux was examined, focusing on the ignition time of the wood. To test ZnO's efficiency on the wood substrate, two different amounts of ZnO (0.5 and 1 g ZnO per dm) were applied to the wood surface and exposed to radiative heat from a cone calorimeter wherein a pristine piece of wood with no ZnO treatment was taken as control.

View Article and Find Full Text PDF

Calcium silicate hydrate (C-S-H) is the main hydration product of cementitious materials, often experiencing complex stress conditions in practical applications. Therefore, reactive molecular dynamics methods were used to investigate the mechanical response of the atomistic structure of C-S-H under various uniaxial and biaxial strain conditions. The results of uniaxial simulations show that C-S-H exhibits mechanical anisotropy and tension-compression asymmetry due to its layered atomistic structure.

View Article and Find Full Text PDF

The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 3 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation.

View Article and Find Full Text PDF

Filled hybrid composites are widely used in various structural applications where machining is critical. Hence, it is essential to understand the performance of the fibre composites' machining behaviour. As such, a new hybrid structural composite was fabricated with redmud as filler and sisal fibre as reinforcement in polyester matrix.

View Article and Find Full Text PDF

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement.

View Article and Find Full Text PDF