Reactive oxygen and nitrogen species (RONS) are emerging as a novel antibacterial strategy to combat the alarming increase in antimicrobial resistance (AMR). RONS can inhibit bacterial growth through reactions with cellular molecules, compromising vital biological functions and leading to cell death. While their mechanisms of action have been studied, many remain unclear, especially in biologically relevant environments.
View Article and Find Full Text PDFIntroduction: There is some evidence of a dose-response relationship for intravascular brachytherapy (IVBT) of native vessel or first-time in-stent restenosis (ISR). It has also been shown that in-field failure predominates following intravascular brachytherapy-treated lesions. Accordingly, it may be advantageous to increase the radiation dose(s) currently used.
View Article and Find Full Text PDFThe study aimed to explore the antimicrobial efficacy of grape seed extract (GSE) and cold atmospheric plasma (CAP) individually or in combination against and wild type (WT) and their isogenic mutants in environmental stress genes. More specifically, we examined the effects of 1% (wt/vol) GSE, 4 min of CAP treatment, and their combined effect on 10403S WT and its isogenic mutants Δ, Δ, Δ, Δ as well as K12 and its isogenic mutants Δ, Δ, and Δ. In addition, the sequence of the combined treatments was tested.
View Article and Find Full Text PDFPurpose: Animal studies with ultrahigh dose-rate radiation therapy (FLASH, >40 Gy/s) preferentially spare normal tissues without sacrificing antitumor efficacy compared with conventional dose-rate radiation therapy (CONV). At the University of Washington, we developed a cyclotron-generated preclinical scattered proton beam with FLASH dose rates. We present the technical details of our FLASH radiation system and preliminary biologic results from whole pelvis radiation.
View Article and Find Full Text PDFFast neutron therapy is a high linear energy transfer (LET) radiation treatment modality offering advantages over low LET radiations. Multileaf collimator technology reduces normal-tissue dose (toxicity) and makes neutron therapy more comparable to MV x-ray treatments. Published clinical-trial and other experiences with fast neutron therapy are reported.
View Article and Find Full Text PDF