Background: Wheat grain protein, zinc (Zn), and iron (Fe) content are important wheat qualities crucial for human nutrition and health worldwide. Increasing these three components simultaneously in wheat grains by a single gene came into the picture through NAM-B1 cloning. NAM-B1 gene and its association with the mentioned grain quality traits have been primarily studied in common and durum wheat and their progenitors T.
View Article and Find Full Text PDFFlaxseed ( L.) is a plant with a wide range of medicinal, health, nutritional, and industrial uses. This study assessed the genetic potential of yellow and brown seeds in thirty F4 families under different water conditions concerning seed yield, oil, protein, fiber, mucilage, and lignans content.
View Article and Find Full Text PDFThis study aimed to examine the reaction of several wheat species with different ploidy levels to foliar application of zinc (Zn) and iron (Fe) under different water regimes. Thirty-five wheat genotypes, including nineteen tetraploids from ten different species, ten hexaploids from five species, and six diploids from three species, were evaluated in the field over two moisture regimes with the following four treatments: control, foliar Zn application, foliar Fe application, and foliar Zn + Fe application. The experiments were conducted according to a split-plot scheme in a randomized complete block design with two replications in each moisture regime.
View Article and Find Full Text PDFThis study aimed to investigate the effect of yellow and brown seed coat color of flax on lignan content, seed yield, and yield components under two contrasting environments of non-stress and water stress conditions. The water stress environment intensified the discrimination between the two seed color groups as the yellow seeded families had lower values for seed yield components under the water stress. Heritability and the genetic advance for seed yield were significantly higher in brown-seeded families than those of yellow-seeded ones at water stress conditions.
View Article and Find Full Text PDF