Publications by authors named "G S Varaprasad"

Oil rigs require mud as a drilling fluid to make boreholes into the earth for crude oil exploration. The operator movements in drilling rigs are repeated bending, lifting of sacks for mud mixing, pushing and/or pulling of sacks and working in hazardous body postures. This study adopts risk assessment tools such as rapid entire body assessment and the revised National Institute for Occupational Safety and Health lifting equation to analyse the risks in postures of the mud mixing operator.

View Article and Find Full Text PDF

Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC.

View Article and Find Full Text PDF

HOX transcript antisense intergenic RNA (HOTAIR) is an oncogenic non-coding RNA whose expression is strongly correlated with the tumor grade and prognosis of a variety of carcinomas including breast cancer (BC). HOTAIR regulates various target genes via sponging and epigenetic mechanisms and controls various oncogenic cellular and signaling mechanisms including metastasis and drug resistance. In BC cells, HOTAIR expression is regulated by a variety of transcriptional and epigenetic mechanisms.

View Article and Find Full Text PDF

Quantum dots (QDs) have an unparalleled ability to mimic true colors due to their size-tunable optical and electronic properties, which make them the most promising nanoparticles in various fields. Currently, the majority of QDs available in the market are cadmium, indium, and lead-based materials but the toxicity and unstable nature of these QDs restricts their industrial and practical applications. To avoid using heavy metal ions, especially cadmium, the current research is focused on the fabrication of perovskite and vanadate QDs.

View Article and Find Full Text PDF

The tumor microenvironment (TME) plays a key role in cancer development and emergence of drug resistance. TME modulation has recently garnered attention as a potential approach for reprogramming the TME and resensitizing resistant neoplastic niches to existing cancer therapies such as immunotherapy or chemotherapy. Nano-based solutions have important advantages over traditional platform and can be specifically targeted and delivered to desired sites.

View Article and Find Full Text PDF