Little is known about shifts in the fecal microbiome of dairy calves preceding and following the incidence of gastrointestinal disease. The objective of this cohort study was to describe the fecal microbiome of preweaned dairy calves before, during, and after gastrointestinal disease. A total of 111 Holstein dairy calves were enrolled on 2 dairies (D1 and D2) and followed until 5 weeks old.
View Article and Find Full Text PDFAims: Bovine respiratory disease (BRD) has serious impacts on dairy production and animal welfare. It is most commonly diagnosed based on clinical respiratory signs (CRS), but in recent years, thoracic ultrasonography (TUS) has emerged as a diagnostic tool with improved sensitivity and specificity. This study aimed to assess the alignment of BRD diagnoses based on a Clinical Respiratory Scoring Chart (CRSC) and weekly TUS findings throughout the progression of BRD of variable severity in preweaned Holstein dairy heifers.
View Article and Find Full Text PDFBovine respiratory disease (BRD) is a leading cause of calf morbidity and mortality, and prevalence remains high despite current management practices. Differential gene expression (DGE) provides detailed insight into individual immune responses and can illuminate enriched pathways and biomarkers that contribute to disease susceptibility and outcomes. The aims of this study were to investigate differences in peripheral leukocyte gene expression in Holstein preweaned heifer calves 1) with and without BRD, and 2) across weeks of age.
View Article and Find Full Text PDFGastrointestinal (GI) disease is a major health concern in preweaned dairy calves. The objective of this fixed cohort study was to use RNA isolated from preweaned Holstein and Jersey heifer calf feces to study the molecular adaptations to variable clinical GI disease. The study was conducted on a commercial calf ranch in the western U.
View Article and Find Full Text PDFCurrently, little is known regarding fecal microbial populations and their associations with methanogenic archaea in pasture-based dairy cattle. In this study, we assessed the fecal microbiome of organic dairy cows across different time points receiving a mixed diet of pasture and total mixed ration (TMR) or TMR only. We hypothesized that the fecal methanogenic community, as well as co-occurrence patterns with bacteria, change across diets.
View Article and Find Full Text PDF