Publications by authors named "G S Sanghera"

The objective of present review is to provide a scientific overview of sugarcane as a potential feedstock for biofuel and use of genome editing approach for improvement of industrial and agronomical traits in sugarcane. Sugarcane, a perennial tropical grass with a high biomass index, is a promising feedstock for bioethanol production, and its bagasse, rich in lignocellulosic material, serves as an ideal feedstock for producing second-generation bioethanol. To improve the conversion of sugarcane biomass into biofuels, developing varieties with improved biomass degradability and high biomass and sucrose content is essential.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a genetically modified sugarcane resistant to red rot by introducing an endochitinase gene from Trichoderma spp., resulting in a six-fold increase in gene expression compared to normal plants.
  • * The resistant transgenic plant (Chit 3-13) demonstrated improved sugar retention and disease resistance, indicating its potential for breeding programs to combat red rot and minimize losses in sugar content.
View Article and Find Full Text PDF

Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease.

View Article and Find Full Text PDF

Purpose: Bagasse, the residue left after extracting juice from sugarcane stalks, is rich in lignocellulosic biomass. The lignin present in this plant biomass is the key factor that hinders the efficient extraction of ethanol from the bagasse. In the current study, γ-irradiated sugarcane mutants were evaluated for variation in lignin content and its corresponding () gene.

View Article and Find Full Text PDF