Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities or interacting with a stellar object in a close orbit. It has been suggested that this disk could be created when the SMBH disrupts a passing star, implying that many QPEs should be preceded by observable tidal disruption events (TDEs).
View Article and Find Full Text PDFThe protein scaffold that includes the caspases is ancient and found in all domains of life. However, the stringent specificity that defines the caspase biologic function is relatively recent and found only in multicellular animals. During the radiation of the Chordata, members of the caspase family adopted roles in immunity, events coinciding with the development of substrates that define the modern innate immune response.
View Article and Find Full Text PDFMany proinflammatory proteins are released via the necrotic form of cell death known as pyroptosis. Sometimes known as gasdermin D (GSDMD) dependent cell death, pyroptosis results from the formation of pores in the plasma membrane leading to eventual cell lysis. Seeking to understand the magnitude of this cell lysis we measured the size of proteins released during pyroptosis.
View Article and Find Full Text PDFPurpose: Retinal vein occlusion (RVO) is a sight-threatening condition typically treated with intravitreal injection of vascular endothelial growth factor (VEGF) antagonists. Treatment response to anti-VEGF therapies is highly variable, with poor visual outcomes and treatment response in patients with significant retinal nonperfusion following RVO. Recently, caspase-9 has been identified as a potent regulator of edema, gliosis, and neuronal dysfunction during acute retinal hypoxia.
View Article and Find Full Text PDF