Glob Chang Biol
August 2024
The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared.
View Article and Find Full Text PDFDiabetes is one of the quickest-growing global health emergencies of the twenty-first century, and data-driven care can improve the quality of diabetes management. We aimed to describe the formation of a 10-year retrospective open cohort of type 2 diabetes patients in Malaysia. We also described the baseline treatment profiles and HbA1c, blood pressure, and lipid control to assess the quality of diabetes care.
View Article and Find Full Text PDFBiological nitrification inhibition (BNI) is a plant function where root systems release antibiotic compounds (BNIs) specifically aimed at suppressing nitrifiers to limit soil-nitrate formation in the root zone. Little is known about BNI-activity in maize (Zea mays L.), the most important food, feed, and energy crop.
View Article and Find Full Text PDFSynthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in , a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices.
View Article and Find Full Text PDF