Publications by authors named "G S Bhumbra"

Article Synopsis
  • The study explores how neural circuits in mice adapt during early stages of progressive motoneuron degeneration, which helps maintain normal movement despite cell loss.
  • It finds that, early on, a specific pre-motor circuit's neurotransmission is significantly reduced due to decreased density of glycine receptors, but this impairment is not widespread across all spinal inhibitory circuits.
  • Later stages of the disease show recovery in neurotransmission and increased excitation of motoneurons, indicating that spinal microcircuits undergo specific compensatory changes that help preserve muscle force output.
View Article and Find Full Text PDF

In many neurological conditions, early-stage neural circuit adaption can preserve relatively normal behaviour. In some diseases, spinal motoneurons progressively degenerate yet movement is initially preserved. We therefore investigated whether these neurons and associated microcircuits adapt in a mouse model of progressive motoneuron degeneration.

View Article and Find Full Text PDF

Elaborate behaviours are produced by tightly controlled flexor-extensor motor neuron activation patterns. Motor neurons are regulated by a network of interneurons within the spinal cord, but the computational processes involved in motor control are not fully understood. The neuroanatomical arrangement of motor and premotor neurons into topographic patterns related to their controlled muscles is thought to facilitate how information is processed by spinal circuits.

View Article and Find Full Text PDF

Motoneurons have long been considered as the final common pathway of the nervous system, transmitting the neural impulses that are transduced into action.While many studies have focussed on the inputs that motoneurons receive from local circuits within the spinal cord and from other parts of the CNS, relatively few have investigated the targets of local axonal projections from motoneurons themselves, with the notable exception of those contacting Renshaw cells or other motoneurons.Recent research has not only characterised the detailed features of the excitatory connections between motoneurons and Renshaw cells but has also established that Renshaw cells are not the only target of motoneurons axons within the spinal cord.

View Article and Find Full Text PDF

Motoneurons (MNs) control muscle contractions, and their recruitment by premotor circuits is tuned to produce accurate motor behaviours. To understand how these circuits coordinate movement across and between joints, it is necessary to understand whether spinal neurons pre-synaptic to motor pools have divergent projections to more than one MN population. Here, we used modified rabies virus tracing in mice to investigate premotor interneurons projecting to synergist flexor or extensor MNs, as well as those projecting to antagonist pairs of muscles controlling the ankle joint.

View Article and Find Full Text PDF