Publications by authors named "G S Berkowitz"

The cellulose and hemicellulose components of plant cell walls are synthesized by the cellulose synthase (CESA) and cellulose synthase-like (CSL) gene families and regulated in response to growth, development, and environmental stimuli. In this study, a total of 29 CESA/CSL family members were identified in and were grouped into seven subfamilies (CESA, CSLA, CSLB, CSLC, CSLD, CSLE and CSLG) according to phylogenetic relationships. The CESA/CESA proteins of were closely related phylogenetically to the members of the subfamily of other species.

View Article and Find Full Text PDF

Peps are endogenous damage-associated polypeptides that evoke defense responses in plants. Like other damage-associated molecular patterns, Pep signals are transduced by receptors. PEPRs are the receptors that transduce Pep danger signals.

View Article and Find Full Text PDF

Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants.

View Article and Find Full Text PDF

Cannabis sativa aromatic prenyltransferase 4 (CsPT4) and 1 (CsPT1) have been shown to catalyze cannabigerolic acid (CBGA) biosynthesis, a step that rate-limits the cannabinoid biosynthetic pathway; both genes are highly expressed in flowers. CsPT4 and CsPT1 promoter driven β-glucuronidase (GUS) activities were detected in leaves of cannabis seedlings, and strong CsPT4 promoter activities were associated with glandular trichomes. Hormonal regulation of cannabinoid biosynthetic genes is poorly understood.

View Article and Find Full Text PDF

Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca influx as an early step in numerous signaling cascades. CNGC-mediated Ca elevations are essential for plant immune defense and high temperature thermosensing. In the present study, we evaluated phenotypes of CNGC2, CNGC4, CNGC6, and CNGC12 null mutants in these two pathways.

View Article and Find Full Text PDF