Publications by authors named "G S Beaupre"

Modifying the foot progression angle during walking can reduce the knee adduction moment, a surrogate measure of medial knee loading. However, not all individuals reduce their knee adduction moment with the same modification. This study evaluates whether a personalized approach to prescribing foot progression angle modifications increases the proportion of individuals with medial knee osteoarthritis who reduce their knee adduction moment, compared to a non-personalized approach.

View Article and Find Full Text PDF

People with knee osteoarthritis who adopt a modified foot progression angle (FPA) during gait often benefit from a reduction in the knee adduction moment. It is unknown, however, whether changes in the FPA increase hip moments, a surrogate measure of hip loading, which will increase the mechanical demand on the joint. This study examined how altering the FPA affects hip moments.

View Article and Find Full Text PDF

Objective: The knee adduction moment (KAM) can inform treatment of medial knee osteoarthritis; however, measuring the KAM requires an expensive gait analysis laboratory. We evaluated the feasibility of predicting the peak KAM during natural and modified walking patterns using the positions of anatomical landmarks that could be identified from video analysis.

Method: Using inverse dynamics, we calculated the KAM for 86 individuals (64 with knee osteoarthritis, 22 without) walking naturally and with foot progression angle modifications.

View Article and Find Full Text PDF

The purpose of this study is to determine the tibiofemoral forces during functional electrical stimulation (FES) rowing in individuals with spinal cord injury (SCI). We analysed the motion of five participants with SCI during FES rowing, with simultaneous measurements of (i) three-dimensional marker trajectories, (ii) foot reaction forces (FRFs), (iii) ergometer handle forces, and (iv) timestamps for electrical stimulation of the quadriceps and hamstrings muscles. We created full-body musculoskeletal models in OpenSim to determine subject-specific tibiofemoral forces during FES rowing.

View Article and Find Full Text PDF