There remains a high unmet medical need for a safe oral therapy for thrombotic disorders. The serine protease factor Xa (fXa), with its central role in the coagulation cascade, is among the more promising targets for anticoagulant therapy and has been the subject of intensive drug discovery efforts. Investigation of a hit from high-throughput screening identified a series of thiophene-substituted anthranilamides as potent nonamidine fXa inhibitors.
View Article and Find Full Text PDFBenzothiophene-anthranilamide 1 (3-chloro-N-[2-[[(4-fluorophenyl)amino]carbonyl]-4-methylphenyl]benzo[b]thiophene-2-carboxamide) was discovered by high throughput screening to be a highly potent and selective non-amidine inhibitor of human factor Xa with a K(i) of 15+/-4nM. Compound 1 is a selective inhibitor of human factor Xa as suggested by the K(i)((app)) determined for nine other human serine proteases and bovine trypsin. The activity of reconstituted human prothrombinase complex was inhibited by compound 1 when assayed in physiological concentrations of the substrate prothrombin.
View Article and Find Full Text PDFThere has been intense interest in the development of factor Xa inhibitors for the treatment of thrombotic diseases. Our laboratory has developed a series of novel non-amidine inhibitors of factor Xa. This paper presents two crystal structures of compounds from this series bound to factor Xa.
View Article and Find Full Text PDFFactor Xa plays a critical role in the formation of blood clots. This serine protease catalyzes the conversion of prothrombin to thrombin, the first joint step that links the intrinsic and extrinsic coagulation pathways. There is considerable interest in the development of factor Xa inhibitors for the intervention in thrombic diseases.
View Article and Find Full Text PDFInhibition of factor Xa (FXa) may interrupt thrombus progression. This study compared the antithrombotic activity of a novel FXa inhibitor, ZK-807834 [MW, 527 D; Ki (human FXa), 0.11 nM], with recombinant tick anticoagulant peptide [rTAP; MW, 6,685 D; Ki, (human FXa) = 0.
View Article and Find Full Text PDF