Tuneable phase plates for free electrons are a highly active area of research. However, their widespread implementation, similar to that of spatial light modulators in light optics, has been hindered by both conceptual and technical challenges. A specific technical challenge involves the need to minimize obstruction of the electron beam by supporting films and electrodes.
View Article and Find Full Text PDFPerfect vortices, whose ring profile is independent of the topological charge, play a key role in telecommunications and particle micro-manipulation. In this work, we report the compact generation of a new kind of double-ring perfect vortices, called double-ring perfect vector beams, by exploiting dual-functional silicon metaoptics. In particular, we develop and test a new paradigm to generate those beams with the possibility of selecting different topological charges between the two rings.
View Article and Find Full Text PDFPerfect vortices have attracted considerable attention as orbital angular momentum (OAM) beams with customizable ring-like intensity distribution. More recently, the non-separable combination of perfect vortices with opposite OAMs and spins, yielding so-called perfect vector beams, has further expanded their applications in the fields of optical manipulation and imaging, high-resolution lithography, and telecommunications. Exploiting the combined manipulation of dynamic and geometric phases using silicon anisotropic metaunits, here we present the design, fabrication, and characterization of novel, to the best of our knowledge, dielectric metaoptics for the compact generation of perfect vector beams in the telecom infrared using a single metasurface.
View Article and Find Full Text PDFThe availability of static tiny optical devices is mandatory to reduce the complexity of optical paths that typically use dynamic optical components and/or many standard elements for the generation of complex states of light, leading to unprecedented levels of miniaturization and compactness of optical systems. In particular, the design of flat and integrated optical elements capable of multiple vector beams generation with high resolution in the visible and infrared range is very attractive in many fields, from life science to information and communication technology. In this regard, we propose dual-functional transmission dielectric metalenses that act simultaneously on the dynamic and geometric phases in order to manipulate independently right-handed and left-handed circularly polarized states of light and generate focused vector beams in a compact and versatile way.
View Article and Find Full Text PDFEntoptic phenomena are visual artifacts arising from the interaction of light with the specific anatomic structure of the human eye. While they are usually too subtle to actually enable additional visual abilities, their perception can provide indirect information on the physiological conditions of the visual system. Among the most famous ones, Haidinger's brushes consist in the appearance of a yellowish bow tie perceived in the presence of linearly polarized white light and originate from the particular spatial distribution of dichroic carotenoid molecules forming a sort of embedded radial polarizer in the foveal region.
View Article and Find Full Text PDF