Publications by authors named "G Roscigno"

Introduction: Personalized medicine has revolutionized the clinical management of patients with solid tumors. However, the large volumes of molecular data derived from next-generation sequencing (NGS) and the lack of harmonized bioinformatics pipelines drastically impact the clinical management of patients with solid tumors. A possible solution to streamline the molecular interpretation and reporting of NGS data would be to adopt automated data analysis software.

View Article and Find Full Text PDF

Identifying master epigenetic factors controlling proliferation and survival of cancer cells allows to discover new molecular targets exploitable to overcome resistance to current pharmacological regimens. In breast cancer (BC), resistance to endocrine therapy (ET) arises from aberrant Estrogen Receptor alpha (ERα) signaling caused by genetic and epigenetic events still mainly unknown. Targeting key upstream components of the ERα pathway provides a way to interfere with estrogen signaling in cancer cells independently from any other downstream event.

View Article and Find Full Text PDF

This study investigates the remarkable attributes of sulfur-doped carbon nanodots (CDs) synthesized in high yield and a narrow size distribution (4.8 nm). These CDs exhibit notable features, including potential bioelimination through renal clearance and efficient photothermal conversion in the near-infrared region with multicolor photoluminescence across the visible spectrum.

View Article and Find Full Text PDF

, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food.

View Article and Find Full Text PDF

Multiple oncogenic alterations contribute to breast cancer development. Metabolic reprogramming, deeply contributing to tumor microenvironment (TME) education, is now widely recognized as a hallmark of cancer. The reverse Warburg effect induces cancer-associated fibroblasts (CAFs) to produce and secrete L-lactate, enhancing malignant characteristics such as neoangiogenesis, metastatic dissemination, and treatment resistance.

View Article and Find Full Text PDF