It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al.
View Article and Find Full Text PDFWe present a study of the adsorption and diffusion of CH₄, CO₂, and H₂ molecules in clathrate hydrates using ab initio van der Waals density functional formalism [M. Dion, Phys. Rev.
View Article and Find Full Text PDFMolecular hydrogen adsorption in a nanoporous metal-organic framework structure (MOF-74) is studied via van der Waals density-functional calculations. The primary and secondary binding sites for H(2) are confirmed. The low-lying rotational and translational energy levels are calculated, based on the orientation and position dependent potential energy surface at the two binding sites.
View Article and Find Full Text PDFWe present an efficient implementation of the van der Waals density functional of Dion et al. [Phys. Rev.
View Article and Find Full Text PDF