Background: Subarachnoid hemorrhage (SAH) is associated with significant mortality and morbidity. The impact of SAH on human glymphatic function remains unknown.
Methods: This prospective, controlled study investigated whether human glymphatic function is altered after SAH, how it differs over time, and possible underlying mechanisms.
Background: Spontaneous subarachnoid hemorrhage (SAH) often results in altered cerebrospinal fluid (CSF) flow and secondary hydrocephalus, yet the mechanisms behind these phenomena remain poorly understood. This study aimed to elucidate the impact of SAH on individual CSF flow patterns and their association with secondary hydrocephalus.
Methods: In patients who had experienced SAH, changes in CSF flow were assessed using cardiac-gated phase-contrast magnetic resonance imaging (PC-MRI) at the Sylvian aqueduct and cranio-cervical junction (CCJ).
Background: In acromegaly, the primary tumor is usually found during magnetic resonance imaging (MRI) of the pituitary gland. A remnant tumor after surgery is, however, harder to depict. When a tumor is missed, the remaining option is usually lifelong pharmacological treatment.
View Article and Find Full Text PDFOver the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days.
View Article and Find Full Text PDF