Priority substances likely to pollute water can be characterized by mid-infrared spectroscopy based on their specific absorption spectral signature. In this work, the detection of volatile aromatic molecules in the aqueous phase by evanescent-wave spectroscopy has been optimized to improve the detection efficiency of future optical sensors based on chalcogenide waveguides. To this end, a hydrophobic polymer was deposited on the surface of a zinc selenide prism using drop and spin-coating methods.
View Article and Find Full Text PDFA fully integrated waveguide-based, efficient surface plasmon coupler composed of a realistic non-tapered dielectric waveguide with graphene patches and sheet is designed and optimized for the infrared. The coupling efficiency can reach nearly 80% for a coupler as short as 700 nm for an operating wavelength of 12 m. This work is carried out using rigorous numerical models based on the finite element method taking into account 2D materials as surface conductivities.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2020
In this paper, a general methodology to study rigorous discontinuities in open waveguides is presented. It relies on a full vector description given by Maxwell's equations in the framework of the finite element method. The discontinuities are not necessarily small perturbations of the initial waveguide and can be very general, such as plasmonic inclusions of arbitrary shapes.
View Article and Find Full Text PDFAmorphous Ge-Sb-Se thin films were co-sputtered from ${{\rm GeSe}_4}$GeSe and ${{\rm Sb}_2}{{\rm Se}_3}$SbSe targets. Depending on the film composition, linear optical properties were studied by ellipsometry. The Kerr coefficient and two-photon absorption coefficient were estimated using Sheik-Bahae's formalism for co-sputtered films of ${{\rm GeSe}_4} {\text -} {\rm Sb}_2{{\rm Se}_3}$GeSe-SbSe compared to ${{\rm GeSe}_2}{\text -}{\rm Sb}_2{{\rm Se}_3}$GeSe-SbSe pseudo-binary system and ${{\rm As}_2}{{\rm Se}_3}$AsSe as reference.
View Article and Find Full Text PDFWe analyzed for the first time the effect of variations in the number of air hole rings and the filling factor of twisted microstructured optical fibers on the resonant couplings between fundamental and cladding modes. Rigorous numerical simulations show that these parameters can be used to control the spectral width of the resonance peaks, resonance loss, and relative strength of polarization effects. Furthermore, the number of air hole rings has a decisive impact on the number of twist-induced resonances and their wavelength range.
View Article and Find Full Text PDF