Publications by authors named "G Reinaudi"

Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states.

View Article and Find Full Text PDF

We have produced large samples of stable ultracold (88)Sr(2) molecules in the electronic ground state in an optical lattice. The fast, all-optical method of molecule creation involves a near-intercombination-line photoassociation pulse followed by spontaneous emission with a near-unity Franck-Condon factor. The detection uses excitation to a weakly bound electronically excited vibrational level corresponding to a very large dimer and yields a high-Q molecular vibronic resonance.

View Article and Find Full Text PDF

We study experimentally and theoretically a beam splitter setup for guided atomic matter waves. The matter wave is a guided atom laser that can be tuned from quasimonomode to a regime where many transverse modes are populated, and propagates in a horizontal dipole beam until it crosses another horizontal beam at 45°. We show that depending on the parameters of this X configuration, the atoms can all end up in one of the two beams (the system behaves as a perfect guide switch), or be split between the four available channels (the system behaves as a beam splitter).

View Article and Find Full Text PDF

We report on a far above saturation absorption imaging technique to investigate the characteristics of dense packets of ultracold atoms. The transparency of the cloud is controlled by the incident light intensity as a result of the nonlinear response of the atoms to the probe beam. We detail our experimental procedure to calibrate the imaging system for reliable quantitative measurements and demonstrate the use of this technique to extract the profile and its spatial extent of an optically thick atomic cloud.

View Article and Find Full Text PDF

We propose to store nonclassical states of light into the macroscopic collective nuclear spin (10(18) atoms) of a 3He vapor, using metastability exchange collisions. These collisions, commonly used to transfer orientation from the metastable state 2 3S1 to the ground state of 3He, can also transfer quantum correlations. This gives a possible experimental scheme to map a squeezed vacuum field state onto a nuclear spin state with very long storage times (hours).

View Article and Find Full Text PDF