Cr -doped Y O (0.5-9 mol%) was synthesized by a simple solution combustion method using Aloe vera gel as a fuel/surfactant. The final obtained product was calcined at 750°C for 3 h, which is the lowest temperature reported so far for the synthesis of this compound.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
The study reports green mediated combustion route for the synthesis of Tb(3+) ion activated Y2O3 nanophosphors using Aloe Vera gel as fuel. The concentration of Tb(3+) plays a key role in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Tb(3+) nanophosphors were characterized by PXRD, SEM, TEM and HRTEM.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
Facile and green route was employed for the synthesis of Y2O3:Dy(3+) (1-11 mol%) nanostructures (NSs) using Aloe vera gel as fuel. The formation of different morphologies of Y2O3:Dy(3+) NSs were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2015
We report the synthesis of Y2O3: Eu(3+) (1-11 mol%) nanoparticles (NPs) with different morphologies via eco-friendly, inexpensive and simple low temperature solution combustion method using Aloe Vera gel as fuel. The formation of different morphologies of Y2O3: Eu(3+) NPs were characterized by PXRD, SEM, TEM, HRTEM, UV-Visible and PL techniques. The PXRD data and Rietveld analysis confirms the formation of single phase Y2O3 with cubic crystal structure.
View Article and Find Full Text PDF