The effect of diet on cancer formation and prevention of carcinogenesis has attracted considerable attention for years and is the subject of several studies. Some components of the daily diet, such as resveratrol, curcumin, genistein, gingerol, can significantly reduce the risk of cancer or affect the rate of tumor progression. Cancer chemoprevention assumes the use of natural or synthetic biologically active substances in order to prevent, inhibit or reverse the progression of cancer.
View Article and Find Full Text PDFKynurenic acid (KYNA) is an end stage product of tryptophan metabolism with a variety of functions in the human body, both in the central nervous system (CNS) and in other organs. Although its activity in the human brain has been widely studied and effects on neural cells were emphasized, the effect of KYNA on oligodendroglial cells remains unknown. Present study aims at describing the activity of high concentration of KYNA in OLN-93 cells.
View Article and Find Full Text PDFTo date, it remains unclear whether mild form of acute pancreatitis (AP) may cause myocardial damage which may be asymptomatic for a long time. Pathogenesis of AP-related cardiac injury may be attributed in part to ROS/RNS overproduction. The aim of the present study was to evaluate the oxidative stress changes in both the pancreas and the heart and to estimate the protective effects of 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (tempol) at the early phase of AP.
View Article and Find Full Text PDFQuinaldic acid is presumed to be a derivative of kynurenic acid, a tryptophan metabolite with proven antiproliferative activity towards cancer cells in vitro. The aim of present study was to evaluate the activity of quinaldic acid in colon cancer cells. The antiproliferative potential of quinaldic acid was assessed in HT-29, LS180 and Caco-2 cells.
View Article and Find Full Text PDFKynurenic acid (KYNA), a tryptophan metabolite, inhibits proliferation of several cancer cell lines including colon cancer, renal cancer and glioblastoma cells. Previous studies reported that inhibitory properties of KYNA may be related to interactions of KYNA with cell cycle regulators and signaling proteins. However, the exact molecular interaction of KYNA with signaling pathways in colon cancer cells has not been studied to date.
View Article and Find Full Text PDF