Publications by authors named "G Rajmohan"

Objective: The primary aim of this study was to explore the relationship between the biophysical structure and function of modern suture materials. Particularly the suture's ability to withstand the stressors of surgery and how the material properties affect knot stability. The secondary aim was to investigate the effect that different knots have on the suture material itself.

View Article and Find Full Text PDF

SERMS like Tamoxifene, 5-hydroxy tamoxifene, raloxifene and endoxifene has been used for the treatment of hormonal imbalances and dependent cancers owing to their action via Estrogen receptors as in the treatment of estrogen sensitive breast cancers. Due to the adverse side effects, modifications and development of the existing or newer SERMS has always been of immense interest. Ormeloxifene, a SERM molecule manufactured by HLL Lifecare Ltd, India as birth control under the trade names Saheli, Novex, and Novex-DS which is also investigated against mastalgia, fibro-adenoma and abnormal uterine bleeding.

View Article and Find Full Text PDF

Plasma, generated in liquid at atmospheric pressure by a nanosecond pulsed voltage, was used to fabricate hybrid structures from boron nitride nanotubes and gold nanoparticles in deionized water. The pH was greatly reduced, conductivity was significantly increased, and concentrations of reactive oxygen and nitrogen species in the water were increased by the plasma treatment. The treatment reduced the length of the nanotubes, giving more individual cuplike structures, and introduced functional groups onto the surface.

View Article and Find Full Text PDF

We report here a novel surfactant mediated fusion of polylactide particles into scaffoldlike structures at room temperature. In the presence of ethanol, evenly spread surfactant coated polylactide particles fused immediately into membranelike structures. Polymer scaffolds of the desired shape and size could be fabricated from polylactide particles using this fusion process.

View Article and Find Full Text PDF

Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen.

View Article and Find Full Text PDF