Publications by authors named "G Raitano"

Toxicologists and authorities evaluate substances that in the traditional way refer to data and knowledge on the toxic mechanism. Non-testing methods (NTMs) proved to be a valuable resource for risk assessment of chemical substances. Indeed, they can be particularly useful when the information provided by different sources is integrated to increase confidence in the result.

View Article and Find Full Text PDF

The Virtual Extensive Read-Across software (VERA) is a new tool for read-across using a global similarity score, molecular groups, and structural alerts to find clusters of similar substances; these clusters are then used to identify suitable similar substances and make an assessment for the target substance. A beta version of VERA GUI is free and available at vegahub.eu; the source code of the VERA algorithm is available on GitHub.

View Article and Find Full Text PDF

Quantitative structure-activity relationship (QSAR) models are powerful in silico tools for predicting the mutagenicity of unstable compounds, impurities and metabolites that are difficult to examine using the Ames test. Ideally, Ames/QSAR models for regulatory use should demonstrate high sensitivity, low false-negative rate and wide coverage of chemical space. To promote superior model development, the Division of Genetics and Mutagenesis, National Institute of Health Sciences, Japan (DGM/NIHS), conducted the Second Ames/QSAR International Challenge Project (2020-2022) as a successor to the First Project (2014-2017), with 21 teams from 11 countries participating.

View Article and Find Full Text PDF

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established and battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific assay for detecting NGTxCs.

View Article and Find Full Text PDF

A sound assessment of in silico models and their applicability domain can support the use of new approach methodologies (NAMs) in chemical risk assessment and requires increasing the users' confidence in this approach. Several approaches have been proposed to evaluate the applicability domain of such models, but their prediction power still needs a thorough assessment. In this context, the VEGA tool capable of assessing the applicability domain of in silico models is examined for a range of toxicological endpoints.

View Article and Find Full Text PDF