Epidemiological evidence suggests the potential for air pollutants to induce male reproductive toxicity. In experimental studies, exposure to ozone during sensitive windows in the sperm lifecycle has been associated with impaired sperm motility. Subsequently, we sought to investigate the effects of episodic exposure to ozone during sperm maturation in the rat.
View Article and Find Full Text PDFInfertility affects approximately 15% of couples of reproductive age, and 50% of the cases are directly related to men. The evaluation of male fertility is based on analyses of routine seminal parameters and the use of more advanced techniques can help identify fertility biomarkers. SP22 sperm protein is considered a biomarker in murine species since its concentration is highly correlated with sperm fertility.
View Article and Find Full Text PDFMany obese patients are exposed to hypolipidemic and serotonin-norepinephrine reuptake inhibitor (SNRI) drugs. Statins are one of the most marketed drugs in the world to treat dyslipidemia, while sibutramine, a SNRI drug, is prescribed in some countries to treat obesity and is detected as an additive in many adulterated weight loss supplements marketed worldwide. Previous studies reported adverse effects of isolated exposure to these drugs on male rat reproductive parameters.
View Article and Find Full Text PDFBackground: The phthalate syndrome (PS) is a collection of related male reproductive developmental effects, ranging in severity, that have been observed in rats after gestational exposure to developmentally-toxic phthalates. For statistical purposes, the PS is defined as a single endpoint and one dose-response analysis is conducted, rather than conducting multiple analyses on each individual endpoint.
Objective: To improve dose-response modeling approaches for the PS and other syndromes of effects by accounting for differing severity levels among the endpoints.
Exposure to endocrine disrupting chemicals has been associated with compromised testosterone production leading to abnormal male reproductive development and altered spermatogenesis. In vitro high-throughput screening (HTS) assays are needed to evaluate risk to testosterone production, yet the main steroidogenesis assay currently utilized is a human adrenocortical carcinoma cell line, H295R, which does not synthesize gonadal steroids at the same level as the gonads, thus limiting assay sensitivity. Here, we propose a complementary assay using a highly purified rat Leydig cell assay to evaluate the potential for chemical-induced alterations in testosterone production by the testis.
View Article and Find Full Text PDF