Publications by authors named "G R Halverson"

Tonian (ca. 1000-720 Ma) marine environments are hypothesised to have experienced major redox changes coinciding with the evolution and diversification of multicellular eukaryotes. In particular, the earliest Tonian stratigraphic record features the colonisation of benthic habitats by multicellular macroscopic algae, which would have been powerful ecosystem engineers that contributed to the oxygenation of the oceans and the reorganisation of biogeochemical cycles.

View Article and Find Full Text PDF

Terrestrial open water evaporation is difficult to measure both in situ and remotely yet is critical for understanding changes in reservoirs, lakes, and inland seas from human management and climatically altered hydrological cycling. Multiple satellite missions and data systems (e.g.

View Article and Find Full Text PDF

The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth's history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization.

View Article and Find Full Text PDF

Earth's surface has undergone a protracted oxygenation, which is commonly assumed to have profoundly affected the biosphere. However, basic aspects of this history are still debated-foremost oxygen (O) levels in the oceans and atmosphere during the billion years leading up to the rise of algae and animals. Here we use isotope ratios of iron (Fe) in ironstones-Fe-rich sedimentary rocks deposited in nearshore marine settings-as a proxy for O levels in shallow seawater.

View Article and Find Full Text PDF

This study uses Landsat 5, 7, and 8 level 2 collection 2 surface temperature to examine habitat suitability conditions spanning 1985-2019, relative to the thermal tolerance of the endemic and endangered delta smelt () and two non-native fish, the largemouth bass () and Mississippi silverside () in the upper San Francisco Estuary. This product was validated using thermal radiometer data collected from 2008 to 2019 from a validation site on a platform in the Salton Sea (RMSE = 0.78 °C, = 0.

View Article and Find Full Text PDF