Vitiligo is a common chronic skin depigmentation disorder that seriously decreases the patients' overall quality of life. Human blood metabolites could contribute to unraveling the underlying biological mechanisms of vitiligo. We used GWAS summary statistics to assess the causal association between genetically predicted 1,400 serum metabolites and vitiligo risk by Mendelian randomization (MR).
View Article and Find Full Text PDFPeatlands are significant global carbon sinks; however, their carbon storage functions are vulnerable to human activities. In the Greater Khingan Mountains of Northeast China, where forest and peatland ecosystems are interspersed extensively, prescribed burning is conducted annually on peatlands to prevent major forest fires. To investigate the effect of prescribed burning on carbon and nutrient cycling processes in peatlands, we conducted a three-year experiment in the Greater Khingan Mountains.
View Article and Find Full Text PDFAflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model.
View Article and Find Full Text PDFResidual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.
View Article and Find Full Text PDFElectrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.
View Article and Find Full Text PDF