Ocular exposure to metal oxide engineered nanomaterials (ENMs) is common as exemplified by zinc oxide (ZnO), a major constituent of sunscreens and cosmetics. The ocular surface that includes the transparent cornea and its protective tear film are common sites of exposure for metal ENMs. Despite the frequency of exposure of the ocular surface, there is a knowledge gap regarding the effects of metal oxide ENMs on the cornea in health and disease.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) exhibit unique size-dependent physiochemical properties that make them attractive for a wide range of applications. However, the large-scale availability of precision AuNPs has been minimal. Not only must the required nanoparticles be of precise size and morphology, but they must also be of exceedingly narrow size distribution to yield accurate and reliable performance.
View Article and Find Full Text PDFThe characterization of cellulose-based nanomaterial (CNM) suspensions in environmental and biological media is impaired because of their high carbon content and anisotropic shape, thus making it difficult to derive structure activity relationships (SAR) in toxicological studies. Here, a standardized method for the dispersion preparation and characterization of cellulose nanofibrils (CNF) and nanocrystals (CNC) in biological and environmental media was developed. Specifically, electron microscopy was utilized and allowed to specify optimum practices for efficiently suspending CNF and CNC in water and cell culture medium.
View Article and Find Full Text PDFDespite the progress in the area of food safety, foodborne diseases still represent a massive challenge to the public health systems worldwide, mainly due to the substantial inefficiencies across the farm-to-fork continuum. Here, we report the development of a nano-carrier platform, for the targeted and precise delivery of antimicrobials for the inactivation of microorganisms on surfaces using Engineered Water Nanostructures (EWNS). An aqueous suspension of an active ingredient (AI) was used to synthesize iEWNS, with the 'i' denoting the AI used in their synthesis, using a combined electrospray and ionization process.
View Article and Find Full Text PDFThe rapid adoption of nanocellulose-based engineered nanomaterials (CNM) by many industries generates environmental health and safety (EHS) concerns. This work presents the development of fluorescently tagged CNM which can be used to study their interactions with biological systems. Specifically, cellulose nano-fibrils and cellulose nano-crystals with covalently attached fluorescein isothiocyanate (FITC) molecules on their surface were synthesized.
View Article and Find Full Text PDF