Publications by authors named "G Potente"

Genetic diversity is heterogeneously distributed among populations of the same species, due to the joint effects of multiple demographic processes, including range contractions and expansions, and mating systems shifts. Here, we ask how both processes shape genomic diversity in space and time in the classical Primula vulgaris model. This perennial herb originated in the Caucasus region and was hypothesized to have expanded westward following glacial retreat in the Quaternary.

View Article and Find Full Text PDF
Article Synopsis
  • Pollinator-driven evolution of floral traits significantly influences the speciation and diversification of angiosperms, with Ophrys orchids employing sexual deception by mimicking female insects to attract male pollinators.
  • The study presents a comprehensive 5.2 Gb genome sequence of Ophrys sphegodes, revealing key genetic features such as transposable element expansion and gene duplication that aid in chemical mimicry and reproductive isolation.
  • A notably differentiated genomic region on chromosome 2 is linked to pollinator-mediated evolution, indicating that this genome can help explore the genetics behind repeated sexual deception and adaptations in pollinators.
View Article and Find Full Text PDF

Research on supergenes, non-recombining genomic regions housing tightly linked genes that control complex phenotypes, has recently gained prominence in genomics. Heterostyly, a floral heteromorphism promoting outcrossing in several angiosperm families, is controlled by the S-locus supergene. The S-locus has been studied primarily in closely related Primula species and, more recently, in other groups that independently evolved heterostyly.

View Article and Find Full Text PDF

Background: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort.

View Article and Find Full Text PDF

Distyly, a floral dimorphism that promotes outcrossing, is controlled by a hemizygous genomic region known as the -locus. Disruptions of genes within the -locus are responsible for the loss of distyly and the emergence of homostyly, a floral monomorphism that favors selfing. Using whole-genome resequencing data of distylous and homostylous individuals from populations of and leveraging high-quality reference genomes of we tested, for the first time, predictions about the evolutionary consequences of transitions to selfing on -genes.

View Article and Find Full Text PDF