Publications by authors named "G Pollak"

Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown.

View Article and Find Full Text PDF

Neurons excited by stimulation of one ear and suppressed by the other, called excitatory/inhibitory (EI) neurons, are sensitive to interaural intensity disparities, the cues animals use to localize high frequencies. EI neurons are first formed in lateral superior olive, which then sends excitatory projections to the dorsal nucleus of the lateral lemniscus and the inferior colliculus (IC), both of which contain large populations of EI cells. We evaluate herein the inputs that innervate EI cells in the IC of Mexican free-tailed bats (Tadarida brasilensis mexicana) with in vivo whole-cell recordings from which we derived excitatory and inhibitory conductances.

View Article and Find Full Text PDF

This review is concerned with how communication calls are processed and represented by populations of neurons in both the inferior colliculus (IC), the auditory midbrain nucleus, and the dorsal nucleus of the lateral lemniscus (DNLL), the nucleus just caudal to the IC. The review has five sections where focus in each section is on inhibition and its role in shaping response selectivity for communication calls. In the first section, the lack of response selectivity for calls in DNLL neurons is presented and discusses why inhibition plays virtually no role in shaping selectivity.

View Article and Find Full Text PDF

Pharmacological block of inhibition is often used to determine if inhibition contributes to spike selectivity, in which a preferred stimulus evokes more spikes than a null stimulus. When inhibitory block reduces spike selectivity, a common interpretation is that differences between the preferred- and null-evoked inhibitions created the selectivity from less-selective excitatory inputs. In models based on empirical properties of cells from the inferior colliculus (IC) of awake bats, we show that inhibitory differences are not required.

View Article and Find Full Text PDF

Interaural intensity disparities (IIDs), the cues all animals use to localize high frequency sounds, are initially processed in the lateral superior olive (LSO) by a subtractive process where inputs from one ear excite and inputs from the other ear inhibit LSO neurons. Such cells are called excitatory-inhibitory (EI) neurons and are prominent not only in the LSO but also in higher nuclei, which include the dorsal nucleus of the lateral lemniscus (DNLL) and inferior colliculus (IC). The IC is of particular interest since its EI cells receive diverse innervation patterns from a large number of lower nuclei, which include the DNLLs and LSOs, and thus comprise a population with diverse binaural properties.

View Article and Find Full Text PDF