The ICH E14/S7B Q&As highlighted the need for best practices concerning the design, execution, analysis, interpretation, and reporting of the in vivo non-rodent QT assay as a component of the integrated risk assessment to potentially support a TQT waiver or substitute. We conducted a dog telemetry study to assess the effects on QTc of six reference compounds (five positive and one negative) previously evaluated by Darpo et al. (2015) in humans.
View Article and Find Full Text PDFPeripheral adiponectin acts on the hypothalamus to inhibit energy expenditure and increase food intake through its receptors AdipoR1 and adipoR2. The hypothalamic expression of adiponectin is poorly documented. We hypothesize that whether hypothalamic adiponectin is confirmed, its expression and secretion could be regulated as peripheral adiponectin.
View Article and Find Full Text PDFWe investigated the detrimental effects of chronic consumption of sweet or sweetened beverages in mice. We report that consumption of beverages containing small amounts of sucrose during several weeks impaired reward systems. This is evidenced by robust changes in the activation pattern of prefrontal brain regions associated with abnormal risk-taking and delayed establishment of decision-making strategy.
View Article and Find Full Text PDFResistin promotes hypothalamic neuroinflammation and insulin resistance through Toll like receptor 4 (TLR4), this hormone is thought to be a link between obesity and insulin-resistance. Indeed, resistin plasma levels are higher in obese and insulin resistant subjects. However, the impact of maternal resistin on the predisposition of offspring to hypothalamic neuroinflammation is unknown.
View Article and Find Full Text PDFAutophagy is a non-selective degradation pathway induced in energy-deprived cells and in non-starved cells by participating in cellular inflammatory responses mainly through the elimination of injured and aged mitochondria that constitute an important source of reactive oxygen species. We have previously reported that resistin/TLR4 signaling pathway induces inflammation and insulin resistance in neuronal cell. However, the impact of resistin-induced inflammation on neuronal autophagy is unknown.
View Article and Find Full Text PDF