Introduction: In pharmacology and toxicology studies, the glomerular filtration rate (GFR) is the gold standard for the assessment of renal function, and the renal clearance of inulin in blood measured by photometers is known as a filtration marker for the determination of GFR. Preclinically, a non-invasive GFR measurement method was recently developed in which near-infrared fluorescently labelled inulin (GFR-Vivo 680) was scanned with fluorescence molecular tomography (FMT). However, measurement of GFR using FMT has major disadvantages and technical challenges, such as requiring experienced skills in animal handling and rapid and precise time management.
View Article and Find Full Text PDFPF-06651600 was developed as an irreversible inhibitor of JAK3 with selectivity over the other three JAK isoforms. A high level of selectivity toward JAK3 is achieved by the covalent interaction of PF-06651600 with a unique cysteine residue (Cys-909) in the catalytic domain of JAK3, which is replaced by a serine residue in the other JAK isoforms. Importantly, 10 other kinases in the kinome have a cysteine at the equivalent position of Cys-909 in JAK3.
View Article and Find Full Text PDFLaser filamentation offers a promising way for the remote handling of large electrical power in the form of guided arc discharges. We here report that it is possible to increase by several orders of magnitude the lifetime of straight plasma channels from filamentation-guided sparks in atmospheric air. A 30 ms lifetime can be reached using a low-intensity, 100 mA current pulse.
View Article and Find Full Text PDFWe study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings.
View Article and Find Full Text PDFLaser filamentation is responsible for the deposition of a significant part of the laser pulse energy in the propagation medium. We found that using terawatt laser pulses and moderately strong focusing conditions in air, more than 60 % of the pulses energy is transferred to the medium, eventually degrading into heat. This results in a strong hydrodynamic reaction of air with the generation of shock waves and associated underdense channels for each of the generated multiple filaments.
View Article and Find Full Text PDF