Front Immunol
October 2020
The highly pathogenic (HP) avian influenza virus (AIV), H5N1 and reassortant H5-subtype HPAIVs, H5N2, H5N6, and H5N8, cause high mortality in domestic birds, resulting in economic losses in the poultry industry. H5N1 and H5N6 also pose significant public health risks and H5N1 viruses are a permanent pandemic threat. To control HPAIVs, eukaryotic expression systems have traditionally been exploited to produce vaccines based on hemagglutinin (HA), a protective viral antigen.
View Article and Find Full Text PDFThe NMR derived translational diffusion coefficients were performed on unlabeled and uniformly labeled C,N human insulin in water, both in neat, with zinc ions only, and in pharmaceutical formulation, containing only m-cresol as phenolic ligand, glycerol and zinc ions. The results show the dominant role of the pH parameter and the concentration on aggregation. The diffusion coefficient Dav was used for monitoring the overall average state of oligomeric ensemble in solution.
View Article and Find Full Text PDFBackground: The highly pathogenic avian influenza viruses of the H5 subtype, such as the H5N1 viral strains or the novel H5N8 and H5N2 reassortants, are of both veterinary and public health concern worldwide. To combat these viruses, monoclonal antibodies (mAbs) against H5 hemagglutinin (HA) play a significant role. These mAbs are effective diagnostic and therapeutic agents and powerful tools in vaccine development and basic scientific research.
View Article and Find Full Text PDFHorizontal gene transfer (HGT) contributes greatly to the plasticity and evolution of prokaryotic and eukaryotic genomes. The main carriers of foreign DNA in HGT are mobile genetic elements (MGEs) that have extremely diverse genetic structures and properties. Various strategies are used for the maintenance and spread of MGEs, including (i) vegetative replication, (ii) transposition (and other types of recombination), and (iii) conjugal transfer.
View Article and Find Full Text PDF