Publications by authors named "G Plaetinck"

The responsiveness towards orally delivered dsRNA and the potency of a subsequent environmental RNA interference (RNAi) response strongly differs between different insect species. While some species are very sensitive to dsRNA delivery through the diet, others are not. The underlying reasons for this may vary, but degradation of dsRNA by nucleases in the gut lumen is believed to play a crucial role.

View Article and Find Full Text PDF

Commercial biotechnology solutions for controlling lepidopteran and coleopteran insect pests on crops depend on the expression of Bacillus thuringiensis insecticidal proteins, most of which permeabilize the membranes of gut epithelial cells of susceptible insects. However, insect control strategies involving a different mode of action would be valuable for managing the emergence of insect resistance. Toward this end, we demonstrate that ingestion of double-stranded (ds)RNAs supplied in an artificial diet triggers RNA interference in several coleopteran species, most notably the western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte.

View Article and Find Full Text PDF

A key feature of the process of programmed cell death (apoptosis) is the efficiency with which the dying cells are recognized and engulfed by phagocytes [1]. Apoptotic cells are rapidly cleared either by neighbouring cells acting as semi-professional phagocytes or by experts of the macrophage line, so that an inflammatory response is avoided [2]. The Caenorhabditis elegans gene ced-6 is required for efficient engulfment of apoptotic cells [3] and is one of a group of genes that define two partially redundant parallel pathways for the engulfment process [4] [5].

View Article and Find Full Text PDF

The genes encoding the mature forms of mouse (mOB) and human OB (hOB) protein (also called leptin) were fused to the secretion signal coding sequence of the Escherichia coli outer membrane protein A (sOMP A). The hybrid genes were preceded by a ribosome binding site (RBS) and were expressed under transcriptional control of both the lipoprotein promoter (Plpp) and the lac promoter-operator (POlac). The recombinant fusion proteins were efficiently expressed and exported into the periplasmic compartment of E.

View Article and Find Full Text PDF

The leptin receptor is a class I transmembrane protein with either a short or a long cytoplasmic domain. Using chemical cross-linking we have analyzed the binding of leptin to its receptor. Cross-linking of radiolabeled leptin to different isoforms of the leptin receptor expressed on COS-1 cells reveals leptin receptor monomer, homodimer, and oligomer complexes.

View Article and Find Full Text PDF